Posts Tagged ‘XENON100’

XENON100 hat immer noch keine WIMPs gefunden

22. Juli 2012

Der Dunkel-Materie-Detektor im Gran Sasso, der immer wieder mit dem Nicht-Nachweis irgendeines Signals („Direkte Detektionsversuche der Dunklen Materie …“) für Unmut sorgt, hat schon wieder eine Negativ-Meldung heraus gegeben: 225 Tage Messungen in der neuesten Konfiguration zeigen wieder nichts. Zwar wurden zwei ‚Ereignisse‘ registriert, aber die sind statitisch konsistent mit dem einen Ereignis, das der Strahlungshintergrund in dem italienischen Tunnel liefern sollte. Gegenüber einem Paper von 2011, das auf 100 Tagen Messungen basierte, ist die Empfindlichkeit des Detektors abermals um einen Faktor 3.5 gesteigert worden, und der noch erlaubte Parameter-Bereich für Weakly Interacting Massive Particles ist weiter geschrumpft. Die XENON-Forscher sind aber weiter guten Mutes und halten WIMPs immer noch gleichzeitig für die beste Erklärung der Dunklen Materie aus der Kosmologie (an deren Realität sie nicht zweifeln) und naheliegendste Erweiterung des Standardmodells der Teilchenphysik. Der einfachsten Supersymmetrie – die auch schon unter Nullresultaten des LHC leidet – geht es nun allerdings immer schlechter. Mit einem noch viel größeren Detektor, XENON1T mit Baubeginn dieses Jahr, soll die Jagd nun fortgesetzt werden: Er wird gleich eine ganze Tonne flüssiges Xenon – statt der 62 kg von XENON100 – verwenden. Und der große amerikanische Xenon-Detektor LUX soll ebenfalls dieses Jahr mit Messungen beginnen. Aprile & a., Preprint 14., INFN Press Release, PM des MPI für Kernphysik 18., New Scientist Blog 19., Cosmic Variance, Symmetry Breaking 20.7.2012. NACHTRAG: neuer Preprint mit der Auswertung der 225 Tage

Ein kurioses Konzept für einen biotechnologischen Dunkel-Materie-Detektor sorgt für Aufsehen oder wenigstens Amüsement: In dem würden unzählige quasi nummerierte DNS-Stränge an Goldplättchen aufgehängt, die von DM-Teilchen losgeschlagene Goldatome durchtrennen sollen. Anschließend würden die abgehackten DNS-Segmente mit etablierten Genanalyse-Techniken (Stichwort PMC) herausgefiltert, und die genaue Flugbahn der Atome wäre zu rekonstruieren. Und zwar in zwei Dimensionen Mikro- und in der dritten (entlang der DNS-Stränge) sogar Nanometer-genau. Zu wissen, aus welcher Richtung ein DM-Teilchen angeflogen kam, wäre eine wesentliche Erkenntnis, zumal die Methode schon eine niedrige Energieschwelle hätte. Sie würde bereits bei Zimmertemperatur funktionieren und die Appartur auch nur ein kleines Zimmer füllen – nur die konkrete Umsetzung ist noch mit einigen Hürden verbunden. (Drukier & al., Preprint 28.6., ArXiv Blog 2., astrobites 19.7.2012. Und Weniger, Preprint 12., Resonaances 17., Scientific American Blog 23., Physics World 24.4., Su & Finkbeiner, Preprint 14., astrobites 19.6.2012 zu möglichem Dunkel-Materie-Nachweis mit dem Fermi-Satelliten)

„Post-Higgs-Kater“: Physik vor ungewisser Zukunft

Between the infamous magnet quench of 2008 to the sobering exclusion plots of the last couple of years, an entire generation of graduate students and young postdocs is internalizing the idea that finding new physics will not be as simple as turning on the LHC as some of us had believed as undergrads. Despite our youthful naivete, the LHC is also still in its infancy with a 14 TeV run coming after its year-long shutdown. The above results are sobering, but they just mean that there wasn’t any low-hanging fruit for us to gobble up right away.“ (Flip Tanedo, Quantum Diaries 19.7.2012)

Bloss den LHC einschalten, und schon fällt einem spektakuläre „Neue Physik“ in den Schoss: Das mag in den letzten Jahren mancher Physiker gehofft haben, aber so ist es eben nicht gekommen. Der Super-Beschleuniger hat bisher letztlich nur bestätigt, was eh die meisten glaubten, und nach der Feierlaune Anfang des Monats bricht sich nun wieder die Besorgnis Bahn, dass nach dem Fang mutmaßlichen Higgs-Teilchens nicht mehr viel heraus kommen könnte. Supersymmetrie? Schwer eingeschränkt (auch durch Versuche des direkten Nachweises; s.o.). Hinweise auf zusätzliche Raumdimensionen? Keine Spur. Schwarze Minilöcher? Spricht schon keiner mehr drüber. Natürlich sind noch nicht einmal die bisherigen Kollisionsdaten komplett ausgewertet, bis Jahresende geht der 8-TeV-Run noch weiter, und dann kommt ja noch die 14-TeV-Ära: Die schiere Datenmenge der nahen Zukunft wird sicher der Physik einen viel klareren Weg als bisher weisen und z.B. die Eigenschaften des Higgs-Feldes – des einzigen fundamentalen Skalarfeldes in der heutigen Natur – genauer beschreiben. Aber eine Menge clevere Hypothesen über das Standardmodell hinaus, auch das ist nun unausweichlich, werden in den kommenden Jahren auf der Strecke bleiben – und in welcher Richtung die großen Antworten liegen, ist nun weniger klar als viele glaubten. (Science News, Quantum Diaries 20., Economist 19., NPR, Strassler, Nature, Telegraph 18., Strassler, Woit 16., Boston Globe 15., USA Today 14.7.2012)

Even though it wasn’t discovered until 2012, the Higgs boson was proposed back in 1964. It is very much a child of the 20th century. In particle physics and cosmology, the 21st century promises discoveries that will help illuminate the dark universe around us. That’s the great thing about history being made: you know things are different now, but you can’t be sure where you’re going to go next.“ (Sean Carroll, CNN 20.7.2012 [NACHTRAG: hier kommentiert])

XENON100 setzt neue schärfste WIMP-Limits für Dunkle Materie

20. April 2011

Die Untergrundexperimente CDMS und gerade erst EDELWEISS hatten schon vorgelegt, und nun hat XENON100 im Gran-Sasso-Tunnel noch deutlich schärfere Obergrenzen für die ‚erlaubten‘ Eigenschaften Weakly Interacting Massive Particles geliefert (in Gestalt einer geschwungenen Kurve des Wechselwirkungsquerschnitts als Funktion der WIMP-Masse). Der Untergrund, v.a. durch radioaktive Kontamination, sollte während des Messintervalls – in der ersten Jahreshälfte 2010 – 1.8±0.6 Events liefern, gesehen wurden drei: völlig insignifikant, die Wahrscheinlichkeit für 3 oder mehr Untergrund-Events lag bei 28%. 100.9 Tage lang waren auf vielfältige Weise abgeschirmte 48 kg flüssiges Xenon von Photomultipliern beobachtet worden: Eindringende WIMPs der Dunklen Materie – durch die Sonne und Erde auf ihrer Bahn um’s Milchstraßenzentrum hindurch saust – hätten sich mit eindeutigen Signaturen bemerkbar machen müssen.

Teilchen, die innerhalb des aktiven Flüssigkeitsvolumens streuen, regen Xenon-Atome an und ionisieren sie: Dies führt einerseits zur prompten Emission von ultraviolettem Szintillationslicht. Zu einer weiteren, verzögerten, Emission von Szintillationslicht kommt es durch die bei der Ionisation freigesetzten Elektronen, die durch die Flüssigkeit bis zu deren Oberfläche driften, um anschließend in dem darüber liegenden, mit Xenon-Gas gefüllten Volumen beschleunigt zu werden. Dabei kommt es im Gas zu Lumineszenz mit der gleichen Wellenlänge von 178 nm wie die des prompten Signals. Die beiden Szintillations-Lichtsignale werden mit zwei Anordnungen von 242 Photomultipliern nachgewiesen: Die gleichzeitige Messung beider Lichtsignale erlaubt die Bestimmung sowohl der Energie als auch der räumlichen Position des Ereignisses (auf Millimeter genau), was Informationen über dessen Natur liefert.

Die neuen Obergrenzen schließen einen großen neuen WIMP-Parameterbereich aus und stehen zum einen in noch viel schärferen Widerspruch zu angeblich positiven WIMP-Detektionen der Experimente DAMA/LIBRA und CoGeNT als ein XENON-Nullresultat vom letzten Jahr (wobei die Konkurrenten schon wieder an der XENON-Datenanalyse mäkeln). Und sie berühren sie erstmals einen Bereich, den gerade auch der Mega-Teilchenbeschleuniger LHC bearbeitet: Sowohl von kommenden XENON-Ergebnissen (eine neue Messreiche mit verringertem Untergrund läuft bereits) wie auch dem LHC dürfen mithin bald noch härtere Aussagen über das Wesen der hypothetischen WIMPs erwartet werden – und vielleicht auch endlich ein signifikant positives Ergebnis. Aprile & al., Preprint 13., Aprile & al., Preprint 15., Farina & al., Preprint 18.4.2011; PM des MPI für Kernphysik, NSF, Weizmann, UCLA Releases; Nature News, Science News [alt.], Physics World, New York Times [alt.], Cosmic Variance, New Scientist Blog, Scientific American, Science Journalism Tracker. NACHTRAG: was CDMS jetzt noch zu melden hat.

Keine Gammastrahlung von Dunkel-Materie-Zerfall in zwei Kugelsternhaufen hat das H.E.S.S.-Cherenkov-Teleskop in Namibia gesehen, das 27 und 15 Stunden lang NGC 6388 bzw. M 15 anstarrte: Gemäß des Standardbildes der Galaxienentstehung sollten in Kugelhaufen gewisse Konzentrationen Dunkler Materie auch heute noch vorhanden sein. (H.E.S.S. Collaboration, Preprint 13.4.) Dafür gibt es bereits eine Interpretation des neuen Tevatron-Mysteriums („Ein weltbewegendes schweres Elementarteilchen im Tevatron?“) als neues Eichboson, das sowohl für die kosmische Dunkle Materie als auch die – gerade von XENON100 ausgeschlossenen, s.o. – Detektionen von DAMA und CoGeNT in Frage käme … (Buckley & al., Preprint 15.4.2011. Auch STFC Release 11.4.2011 zur Technicolor-Interpretation des Effekts)

Den 7Be-Sonnenneutrino-Fluss genauer denn je gemessen

hat das Borexino-Experiment im Gran Sasso-Tunnel, das derzeit einzige weltweit, das Wechselwirkungen niederenergetischer Sonnenneutrinos in Echtzeit beobachten kann: Der Wert hat einen Fehler von weniger als 5% und liefert – zusammen mit dem 8B-Sonnenneutrino-Fluss, den das Experiment bereits früher bestimmte – harte Aussagen über das Wesen der Neutrino-Oszillationen. Dass der Mischungswinkel groß ist („LMA-Region“ des Parameter-Raums), ist nun mit >8.5 Sigma sicher. (Interactions 11.4.2011)

Erste Ergebnisse eines akustischen Neutrino-Detektors, des AMADEUS-Systems von ANTARES im Mittelmeer („Neutrino-Teleskop …“), liegen nun vor: Seit 2008 messen 6 x 6 Hydrophone, was es im Ozean für interessante Geräusche gibt. Neutrinos mit mehr als 100 PeV Energies sollten es auch krachen lassen, und die AMADEUS-Messungen zeigen, dass das System im Prinzip Neutrinos bis 1 EeV hinab sehen würde – wenn es groß genug wäre. (ANTARES Collaboration, Preprint 15.4.2011. Und Russia beyond the Headlines 19.4.2011 zu einem neuen großen Neutrino-Teleskop im Baikalsee)

Gravitationsmessungen an ultrakalten Neutronen

eröffnen neue Möglichkeiten, Eigenschaften der Schwerkraft auf mikroskopischen Distanzen – sind träge und schwere Masse wirklich dasselbe, gibt es Abweichungen vom Newton’schen Kraftgesetz, macht sich die Stringtheorie bemerkbar usw.? – mit extremer Präzision zu erforschen. Der Vorteil: Die Teilchen sind elektrisch neutral und gehorchen im Experiment – das ihre Quantennatur ausnutzt und dabei höchst sensitiv auf Energielevels reagiert – ausschließlich der Gravitation. (PM der TU Wien, All that matters 17., BBC 18.4.2011. Und der Telegraph 17.4.2011 zum LIGO/VIRGO/GEO600-Nachfolger „Einstein Telescope“ mit unterirdischen Riesen-Laser-Interferometern zur Beobachtung von Gravitationswellen) NACHTRAG: noch ein wesentlich detaillierterer Artikel zu den Neutronen-Experimenten.

Jagd auf Dunkle-Materie-Teilchen: die nächste Beinahe-Entdeckung, jetzt von EDELWEISS-II

25. März 2011

Man konnte es schon hier, hier und eben noch hier („Nachweis …“) lesen: Die Detektoren, die im Untergrund Teilchen der Dunklen Materie direkt nachzuweisen trachten, nähern sich einer Empfindlichkeit, bei der es passieren sollte. In den vergangenen 20 Jahren sind sie um einen Faktor 1000 besser geworden, und in den nächsten 10 dürfte es ein weiterer Faktor 100 sein: In 1, 5, 10 Jahren höchstens sollte sich ein eindeutiges Signal zeigen. Dem 2009-er Beinahe-Erfolg von CDMS hat sich gerade eine ebenfalls nicht signifikante Detektion von ein Handvoll Weakly Interacting Massive Particles durch EDELWEISS-II hinzu gesellt: „Five nuclear recoil candidates are observed above 20 keV, while the estimated background is less than 3.0 events.“ Beide Experimente arbeiten nun an einer gemeinsamen Auswertung ihrer Messungen, von der man allerdings nicht zu viel erwarten sollte: Die beiden WIMP-Kandidaten von CDMS hätten Energien von 12 und 15 keV und wären wohl nicht dasselbe wie die EDELWEISS-Kandidaten. Ein weiteres wichtiges Experiment ist XENON100, das bisher rein gar nichts sieht und damit zwei anderen Experimenten – DAMA und CoGeNT – widerspricht, die etwas zu sehen glauben.

Inzwischen hat sich dessen Datenmenge mindestens verzehnfacht, auch wenn es noch Ärger mit der Auswertung („Radioaktivitätsproblem …“) gibt. In den nächsten paar Jahren sollten sich die Widersprüche zwischen den Experimenten durch deren weitere Verbesserungen eigentlich auflösen (und endlich mal zwei mit unterschiedlicher Technik dieselbe Art Teilchen messen, das im Idealfall auch noch direkt mit dem LHC ‚hergestellt‘ werden kann) – aber es ist keineswegs ausgemacht, dass am Ende genau ein WIMP dingfest gemacht ist, das für alle astronomischen Effekte der Dunklen Materie verantwortlich zeichnet. Die ’normale‘ Materie ist schließlich kompliziert genug: Da kann es gut sein, dass das Dunkle Universum auch über verschiedene Teilchen verfügt. Wie auch immer: Wenn das oder die Teilchen erst einmal entdeckt sind, wird die nächste Generation von Detektoren ganz direkt ihren Eigenschaften nachspüren. Armengaud & al., Preprint 21., Nature News (in diesem 3-Seiten-Review wurde EDELWEISS glatt vergessen), Nature Blog 24.3.2011 sowie Aspera zu EDELWEISS und dem generellen Stand der Forschung. NACHTRAG: noch ’n dicker Review!

Feuer in der Soudan-Mine – Untergrund-Detektoren wohl nicht gefährdet: Ein Brand im Schacht zum Soudan Underground Laboratory in Minnesota am 17. März konnte rasch gelöscht werden, und wahrscheinlich ist den Experimenten in 700 m Tiefe zur DM-Jagd (CDMS sitzt hier) und anderer Fundamentalphysik nichts passiert. Das Labor – das zu dem Zeitpunkt menschenleer war – ist vom Rest des Ex-Bergwerks gut abgeschottet; allerdings musste die Kühlung von CMDS herunter gefahren werden, und es kann dauern, bis das Experiment wieder läuft. (Physics World 22., Nature Blog 21., Timberjay 17.3.2011) NACHTRAG: Nach einer ersten Besichtigung sind die Experimente im Labor unbeschädigt, aber es muss viel geputzt werden. Und CoGeNTs schöne Messreihe ist unterbrochen … NACHTRAG 2: … während man sich auch bei CDMS Sorgen macht. NACHTRAG 3: noch’n Nachzügler. NACHRTRAG 4: Den Experimenten ist nichts passiert, aber die Wiederinbetriebnahme dauert.

Hat das Tevatron Anzeichen „neuer Physik“ entdeckt?

Nur noch ein halbes Jahr darf der amerikanische Teilchenbeschleuniger laufen, bevor er im September abgeschaltet wird („Das Tevatron …“) – aber auf der Zielgeraden könnte noch einmal eine bedeutende Entdeckung gelungen sein: Kuriose Effekte im Zusammenhang mit dem Top-Quark, die mit steigender Energie ausgeprägter werden (aber nicht so signifikant sind, dass es nicht doch eine Zufallsfluktuation sein könnte), scheinen auf ein unerwartetes neues Elementarteilchen hin zu deuten. Das Higgs-Teilchen ist es sicher nicht, eher ein Axigluon, Diquark oder unbekanntes Boson – oder aber ein Hinweis auf zusätzliche Raumdimensionen. Sollte es da tatsächlich ein exotisches Teilchen geben, das sich dem Tevatron indirekt zu erkennen gegeben hat, dann liegt es u.U. in der Reichweite des – inzwischen wieder kräftig Protonen kollidieren lassenden – LHC, es direkt zu erzeugen.

Derweil hat das Tevatron geholfen, den möglichen Massenbereich für das Higgs noch weiter einzugrenzen, auf 114 bis 156 oder 183 bis 185 GeV/c^2: Damit ist es wahrscheinlicher geworden, dass es „leicht“ ist, was wiederum den Nachweis durch den LHC erschweren würde. Dem Endlauf des Tevatron – wo man sich immer noch vage Hoffnungen macht, dem CERN die Entdeckung wegschnappen zu können – ist übrigens ein Blitzschlag dazwischen gekommen: Mindestens 2 Wochen liegt der Beschleuniger lahm, während ein Magnet ausgetauscht wird. (Ars Technica, Nature Blog 23., US/LHC Blog 22., Symmetry Breaking 18., Physics World 15.3.2011. Und Nature 17.3.2011 zur erhofften Rolle des LHC bei der nächsten Großen Vereinheitlichung, 150 Jahre nach Maxwell) NACHTRAG: CERN Bulletin (mehr) zum neuen Run des LHC. NACHTRAG 2: Beim CERN gibt man sich siegessicher, dass das Tevatron Higgs-mäßig verloren hat. NACHTRAG 3 zum Tevatron-Effekt. NACHTRAG 4: dito. NACHTRAG 5: dito, oder auch nicht, oder was.

Neutrino-Teleskop mit optischen Teleskopen verkoppelt

Der Neutrino-Detektor ANTARES im Mittelmeer vor der französischen Küste ist inzwischen mit mehreren automatischen optischen Teleskopen „verkoppelt“ worden, die sonst rasch auf dasjenige Himmelsfeld schwenken, in dem Satelliten einen Gamma-ray Burst gesehen haben. Dieselbe Reaktion wird auch bei – vermeintlichen – Neutrinobursts (das sind zwei oder mehr Neutrinos dicht beieinander oder ein einzelnes mit besonders hoher Energie) getriggert, die ANTARES registriert, könnten sie doch auf dieselben gewalttätigen kosmischen Prozesse zurück gehen, die es am Himmel im sichtbaren Licht blitzen lassen. Einen konkreten Erfolg gab es zwar bei den zwei Dutzend Triggern seit 2009 noch nicht aber ein Akronym für das intergrierte System: „TAToO“ = Telescopes and ANTARES Target of Opportunity. (Ageron & al., Preprint 23.3.2011)

Das schwerste und komplexeste „Anti-Ding“, einen Anti-Helium-Kern aus zwei Antiprotonen und zwei Antineutronen, hat der Relativistic Heavy Ion Collider erzeugen können, eine weitere Steigerung gegenüber dem Anti-Hyper-Triton („Schwerste Antimaterie …“) vom letzten Jahr. Das Antihelium entsteht allerdings so selten, dass es das AMS-Experiment – das nächsten Monat endlich auf die ISS geschafft werden soll – wohl nicht sehen wird. Und das nächstschwerere Antielement, Anti-Lithium, ist auch künstlich noch lange nicht in Reichweite – bei Raumtemperatur könnte es theoretisch einen Festkörper bilden. (STAR Collaboration, Preprint, New Scientist 22., Physics World 25.3.2011) NACHTRAG: einen Monat später LBL und BNL Releases, CERN Bulletin; Nature Blog, Spiegel.

LHC wird wieder hoch gefahren – und erste Negativ-Resultate in Sachen Supersymmetrie und Higgs-Teilchen

12. März 2011

Seit dem 19. Februar kreisen nach der Winter-Wartungspause wieder Protonen im Large Hadron Collider, der sich ohne nennenswerte Probleme wieder in Betrieb nehmen ließ, und ab Mitte März sollen sie auch wieder kollidieren: Da nun die „Leuchtkraft“ von Anfang an viel höher ist als während deren vorsichtiger Steigerung das Jahr 2010 hindurch, werden 2011 rund 100-mal mehr Kollisionsdaten – und damit viel aussagekräftigere Statistik – erwartet. Trotzdem waren auch schon die 2010-er Daten neben der Bestätigung des Standardmodells der Teilchenphysik bereits für Tests zumindest bestimmter Ideen in Sachen Supersymmetrie und Higgs-Mechanismus gut genug: Beide verliefen negativ. Doch das bedeutet noch nicht viel: Bei der – weithin als besonders sinnige und „schöne“ Erweiterung des Standardmodells angesehenen – Supersymmetrie können CMS und ATLAS bislang nur die Variante CMSSM + mSUGRA ausschließen, beim Higgs gilt das nur für eine spekulative Erweiterung der Teilchenfamilienzahl von 3 auf 4 und einen bestimmten Massenbereich.

Wenn der LHC weiter so gut läuft, sollte sich Supersymmetrie der einen oder anderen Art aber im Laufe des Jahres blicken lassen – wenn dies jedoch auch bis Ende 2012 (wenn der LHC für umfangreiche Upgrades ein Jahr lang still gelegt wird) immer noch nicht der Fall sein sollte, dann sieht es womöglich schlecht aus. Dito in Sachen Higgs (oder Higgse), aber da würde so mancher Physiker sogar eine eindeutige Nicht-Detektion für interessanter als einen Nachweis halten, weil das der Teilchenphysik erst recht neuen Schub verleihen würde. Symmetry Breaking 10., Interactions 7., Starts with a Bang 4., Symmetry Breaking, New Scientist Blog, Nature OpEd 2.3., CERN Bulletin, Nature, BBC 28., Symmetry Breaking 25., New Scientist Blog 24., Physics World, Science 2.0 22., Reuters 21., Paper vom Scopel & al., Physics World Blog, Cosmic Log 20., Cosmic Variance 17.2.2011. NACHTRAG: Nun kollidieren sie wieder, die Protonenstrahlen! Und neue Higgs-Limits vom Tevatron – ist das Teilchen eher leicht?

Nachweis der Dunklen Materie nahe – oder gar schon im Kasten?

In den kommenden 5 bis 10 Jahren wird auf einem oder mehreren Wegen ein überzeugender Nachweis von Teilchen der Dunklen Materie gelungen sein, davon gehen heute viele Teilchenphysiker aus – und ein paar sind sich sogar (fast) sicher, schon ein mehr oder weniger überzeugendes positives Signal gefunden zu haben. Allerdings ist das Forschungsgebiet von ungewöhnlicher Aggression der kleinen Forschungsgruppen untereinander gekennzeichnet, und des einen Entdeckung ist meist des anderen Selbsttäuschung. Auch wirft man sich gerne gegenseitig vor, nicht alle Fakten auf den Tisch zu legen, so dass die statistische Bewertung behaupteter Effekte mitunter Geschmackssache bleibt; eine kontroverse Metaanalyse sieht z.B. jetzt bei gleich drei Detektionsexperimenten Verdächtiges. Auch die Schwelle, ab der man von einem klaren Nachweis eines DM-Teilchen sprechen kann, ist kontrovers: Manchen würde es genügen, wenn zwei direkte Detektionsexperimente (also Messgeräte für Exotisches tief im Untergrund) parallel ein Auf und Ab der Rate – im Einklang mit dem Erdorbit um die Sonne – sehen würden, andere verlangen zusätzlich die Erzeugung des Teilchens in einem Beschleuniger. (Science 4.3.2011 S. 1132-3. Auch Cosmic Variance, Physics Today Blog und Starts with a Bang zu der Falschmeldung, die DM sei widerlegt worden, und Astrobites zu ihrer Beobachtung per Microlensing)

Radioaktivitätsproblem beim direkten Detektor XENON100: Eines der wichtigsten Untergrundexperimente zum direkten Nachweis durchzischender DM-Teilchen wird empfindlich von zerfallendem Krypton-85 gestört, das sich in den 161 kg flüssigem Xenon befindet – zwar lassen sich die Zerfallsereignisse aufgrund ihrer Signatur heraus filtern, aber leider nur mit 99.5%iger Sicherheit. Will sagen: Jedes 200. vermeintliche DM-Teilchen ist ein falsches positives, und das ist bei der geringen zu erwartenden Detektionsrate ein Problem, an dem nun emsig gearbeitet wird. (Nature 25.2.2011)

Zoff im Untergrund: Jäger der Dunklen Materie zanken sich über ein Null-Resultat

8. Mai 2010

Hat der Detektor XENON 100 harte Limits für Teilchen der Dunklen Materie mit geringer Masse geliefert und damit vermeintlich positive Resultate der Experimente DAMA und CoGeNT widerlegt – oder können (oder wollen) diese Physiker nicht richtig rechnen? Auf ein vielbeachtetes Paper der XENON100-Kollaboration – die mit ihrem Detektor aus 62 kg flüssigem Xenon im Gran-Sasso-Tunnel nicht ein WIMP-Teilchen fing, obwohl das nach den Daten der anderen beiden Untergrund-Experimente zu erwarten gewesen sei – haben zwei US-Physiker binnen Tagen mit einer außergewöhnlich aggressiven Arbeit geantwortet, in der den XENON-Auswertern unverholen Inkompetenz und Ignoranz vorgeworfen werden. Die Empfindlichkeit des Detektors gerade im kritischen niedrigen Energiebereich sei nämlich viel geringer als sie behaupten würden – und hätten sie die Literatur zum Thema gelesen, wüssten sie das auch. Mithin seien die (ansonsten wenig ernst genommenen) positiven Detektionen Dunkler Materie-Teilchen weiterhin unwiderlegt. Die XENON-Fraktion bereitet bereits den Gegenschlag vor. Immerhin: Hier wird über echte Messungen und Daten gestritten, durchaus ein Fortschritt, wenn auch in einem Stil, der eher an die Abgründe der Blogosphäre erinnert … Mehr bei Physics World 6., Scientific American 5., Cosmic Variance, Nature Blog 4., New York Times, New Scientist 3., Resonaances 1.5., 27., ArXiv Blog 26.4.2010. NACHTRAG: Die XENON-Gruppe steht zu ihrem Paper … NACHTRAG 2: … und es geht weiter hin und her und …

Der ganze Mond als Neutrino-Detektor genutzt werden kann vermutlich mit dem im Aufbau befindlichen europäischen Radiointerferometer LOFAR für ganz lange Wellen: Treffen die Teilchen den Regolith, entsteht kohärente Cherenkov-Strahlung mit ungefähr 3 GHz Frequenz. Das Westerbork-Radioteleskop hat diese zwar nicht gesehen, aber die bisher schärfste Obergrenze festlegen können – LOFAR aber müsste es dann schaffen. (ASPERA April 2010, auch zu den Neutrinoteleskopen IceCube und NEMO sowie ein LBL Release zum Neutrinodetektor ARIANNA und Spiegel zum Neutrinodetektor CUORE) NACHTRAG: noch’n CUORE-Artikel.

Immer höhere Kollisionsraten im Large Hadron Collider

werden seit Ende April erreicht, nachdem die Bündelung („squeezing“) der Protonenstrahlen mit den Magneten erhöht wurde: Die „Leuchtkraft“ des LHC stieg gleich um einen Faktor 10 an. Ziel ist es, bis Ende kommenden Jahres eine Million mal mehr Kollisionsereignisse („10 Millionen …“) zu beobachten als bis jetzt, und der Beschleuniger ist auf einem guten Weg: Bottom-Quarks, W-Bosonen und andere ‚Klassiker‘ der Teilchenphysik sind bereits beobachtet worden, was auch die Funktionsweise der riesigen Detektoren belegt. Bald könnten daher auch die ersten neuen Entdeckungen folgen, zwar noch nicht das Higgs-Teilchen, aber manch andere Exotika. (Symmetry Magazine April [Editorial]; Symmetry Breaking 6., Reuters 5., CERN Bulletin 3.5. [mehr], Science Blogs 29., Cosmic Variance 28., Bild der Wissenschaft 24., New Scientist 23., Physics World 15., New Scientist, Science Blogs 14.4.2010)

Neue – aber weiter indirekte – Hinweise auf ein Tetraquark und damit einen neuartigen Zustand der Materie sind in Elektron/Positron-Kollisionen im japanischen BELLE-Detektor gesehen worden: Eigentlich sollte „Bottonium“ erzeugt werden, ein Meson aus einem Bottom-Quark und seinem Antiteilchen, aber das Kollisionsprodukt zerfiel viel schneller. Ein Tetraquark (Bottom + Up + beider Antiteilchen) würde passen, aber die Signatur ist nicht eindeutig für das schon vor über 30 Jahren postulierte Teilchen. (Nature Blog 5., New Scientist 4.5., Physics World 27.4.2010)

Gewitter funktionieren als Teilchenbeschleuniger in der Natur

Davon zeugen nicht nur Terrestrische Gamma-Blitze („Auch Gewitterwolken …“; s.a. ISAN 105-6) sondern auch der Nachweis von Radiostrahlung, die mit dem Auftreten von Sprite-Entladungen hoch über Gewitterwolken korreliert – vorausgesagt wurde das Ganze übrigens schon 1925. Kosmische Strahlung ionisiert die Hochatmosphäre, und die elektrischen Felder der Sprites beschleunigen die geladenen Teilchen. Die dabei wiederum eine charakteristische Radiostrahlung aussenden – genau wie sie 2008 bei Messungen auf einem Pyrenäen-Gipfel parallel zu Sprite-Sichtungen gemessen wurde. Ein japanischer, ein russischer und ein französischer Satellit sollen sich demnächst diesen Phänomenen zuwenden. (Physics World 19.4.2010)