XENON100 hat immer noch keine WIMPs gefunden

Der Dunkel-Materie-Detektor im Gran Sasso, der immer wieder mit dem Nicht-Nachweis irgendeines Signals (“Direkte Detektionsversuche der Dunklen Materie …”) für Unmut sorgt, hat schon wieder eine Negativ-Meldung heraus gegeben: 225 Tage Messungen in der neuesten Konfiguration zeigen wieder nichts. Zwar wurden zwei ‘Ereignisse’ registriert, aber die sind statitisch konsistent mit dem einen Ereignis, das der Strahlungshintergrund in dem italienischen Tunnel liefern sollte. Gegenüber einem Paper von 2011, das auf 100 Tagen Messungen basierte, ist die Empfindlichkeit des Detektors abermals um einen Faktor 3.5 gesteigert worden, und der noch erlaubte Parameter-Bereich für Weakly Interacting Massive Particles ist weiter geschrumpft. Die XENON-Forscher sind aber weiter guten Mutes und halten WIMPs immer noch gleichzeitig für die beste Erklärung der Dunklen Materie aus der Kosmologie (an deren Realität sie nicht zweifeln) und naheliegendste Erweiterung des Standardmodells der Teilchenphysik. Der einfachsten Supersymmetrie – die auch schon unter Nullresultaten des LHC leidet – geht es nun allerdings immer schlechter. Mit einem noch viel größeren Detektor, XENON1T mit Baubeginn dieses Jahr, soll die Jagd nun fortgesetzt werden: Er wird gleich eine ganze Tonne flüssiges Xenon – statt der 62 kg von XENON100 – verwenden. Und der große amerikanische Xenon-Detektor LUX soll ebenfalls dieses Jahr mit Messungen beginnen. Aprile & a., Preprint 14., INFN Press Release, PM des MPI für Kernphysik 18., New Scientist Blog 19., Cosmic Variance, Symmetry Breaking 20.7.2012. NACHTRAG: neuer Preprint mit der Auswertung der 225 Tage

Ein kurioses Konzept für einen biotechnologischen Dunkel-Materie-Detektor sorgt für Aufsehen oder wenigstens Amüsement: In dem würden unzählige quasi nummerierte DNS-Stränge an Goldplättchen aufgehängt, die von DM-Teilchen losgeschlagene Goldatome durchtrennen sollen. Anschließend würden die abgehackten DNS-Segmente mit etablierten Genanalyse-Techniken (Stichwort PMC) herausgefiltert, und die genaue Flugbahn der Atome wäre zu rekonstruieren. Und zwar in zwei Dimensionen Mikro- und in der dritten (entlang der DNS-Stränge) sogar Nanometer-genau. Zu wissen, aus welcher Richtung ein DM-Teilchen angeflogen kam, wäre eine wesentliche Erkenntnis, zumal die Methode schon eine niedrige Energieschwelle hätte. Sie würde bereits bei Zimmertemperatur funktionieren und die Appartur auch nur ein kleines Zimmer füllen – nur die konkrete Umsetzung ist noch mit einigen Hürden verbunden. (Drukier & al., Preprint 28.6., ArXiv Blog 2., astrobites 19.7.2012. Und Weniger, Preprint 12., Resonaances 17., Scientific American Blog 23., Physics World 24.4., Su & Finkbeiner, Preprint 14., astrobites 19.6.2012 zu möglichem Dunkel-Materie-Nachweis mit dem Fermi-Satelliten)

“Post-Higgs-Kater”: Physik vor ungewisser Zukunft

Between the infamous magnet quench of 2008 to the sobering exclusion plots of the last couple of years, an entire generation of graduate students and young postdocs is internalizing the idea that finding new physics will not be as simple as turning on the LHC as some of us had believed as undergrads. Despite our youthful naivete, the LHC is also still in its infancy with a 14 TeV run coming after its year-long shutdown. The above results are sobering, but they just mean that there wasn’t any low-hanging fruit for us to gobble up right away.” (Flip Tanedo, Quantum Diaries 19.7.2012)

Bloss den LHC einschalten, und schon fällt einem spektakuläre “Neue Physik” in den Schoss: Das mag in den letzten Jahren mancher Physiker gehofft haben, aber so ist es eben nicht gekommen. Der Super-Beschleuniger hat bisher letztlich nur bestätigt, was eh die meisten glaubten, und nach der Feierlaune Anfang des Monats bricht sich nun wieder die Besorgnis Bahn, dass nach dem Fang mutmaßlichen Higgs-Teilchens nicht mehr viel heraus kommen könnte. Supersymmetrie? Schwer eingeschränkt (auch durch Versuche des direkten Nachweises; s.o.). Hinweise auf zusätzliche Raumdimensionen? Keine Spur. Schwarze Minilöcher? Spricht schon keiner mehr drüber. Natürlich sind noch nicht einmal die bisherigen Kollisionsdaten komplett ausgewertet, bis Jahresende geht der 8-TeV-Run noch weiter, und dann kommt ja noch die 14-TeV-Ära: Die schiere Datenmenge der nahen Zukunft wird sicher der Physik einen viel klareren Weg als bisher weisen und z.B. die Eigenschaften des Higgs-Feldes – des einzigen fundamentalen Skalarfeldes in der heutigen Natur – genauer beschreiben. Aber eine Menge clevere Hypothesen über das Standardmodell hinaus, auch das ist nun unausweichlich, werden in den kommenden Jahren auf der Strecke bleiben – und in welcher Richtung die großen Antworten liegen, ist nun weniger klar als viele glaubten. (Science News, Quantum Diaries 20., Economist 19., NPR, Strassler, Nature, Telegraph 18., Strassler, Woit 16., Boston Globe 15., USA Today 14.7.2012)

Even though it wasn’t discovered until 2012, the Higgs boson was proposed back in 1964. It is very much a child of the 20th century. In particle physics and cosmology, the 21st century promises discoveries that will help illuminate the dark universe around us. That’s the great thing about history being made: you know things are different now, but you can’t be sure where you’re going to go next.” (Sean Carroll, CNN 20.7.2012 [NACHTRAG: hier kommentiert])

Schlagwörter: , , , ,

4 Antworten to “XENON100 hat immer noch keine WIMPs gefunden”

  1. Dr. B. Pfeiffer Says:

    Ich kann den Hype um das Higgs-Teilchen eh nicht ganz verstehen. Ich arbeite seit einigen Jahren an der Evaluation der Massen der Isotope, aus der meine Erfahrungswelt (mich eingeschlossen) besteht. Die Ruhemasse der 3 Quarks, aus denen Proton und Neutron bestehen, machen nur einen (kleinen) Teil der Nukleonenmasse aus. Die Masse der Isotope wird selbst von den Quarks nicht direkt bestimmt. Das Higgs-Teilchen ist für mich nur von akademischen Interesse.

  2. skyweek Says:

    Klar, für die (Gesamt-)Masse von Hadronen spielt der Higgs-Effekt praktisch keine Rolle – aber ohne ihn würde halt das ganze Standardmodell nicht funktionieren: Würden sich dann “Ihre” Quarks überhaupt bequemen, sich zu Nukleonen zusammen zu finden? Und Atome mit masselosen Elektronen sähen zumindest ziemlich anders aus.

    • Dr. B. Pfeiffer Says:

      Damit kein Missverständnis aufkommt: Ich habe nichts gegen das Higgs, sondern sehe den Hype um das Higgs als übertrieben an.
      Es ist zwar nicht mehr wirklich überraschend, dass damit das Standardmodell abgeschlossen ist. Das Interesse hat sich jedoch schon seit langem auf neue Physik jenseits des Standardmodells verlagert, da dieses Unvollständig sein muss (siehe z.B. Neutrinooszillationen). Im Artikel werden diese neuen Hypothesen ja auch angesprochen, nur hat der LHC bisher dazu wenig beigetragen.

      • skyweek Says:

        Ich hatte nie gezweifelt, dass die GSI auf dem Boden des Standardmodells steht. :-) Und Ihre Enttäuschung, dass der LHC bisher keinen klaren Weg zu ‘neuer Physik’ gewiesen hat, wird ja von vielen Teilchenphysikern mehr oder weniger offen geteilt. Aber geben wir ihm noch Zeit: Vielleicht werden die vagen Abweichungen bestimmter Kanäle des Zerfalls des gefeierten Bosons ja schon bis Jahresende signifikant(er).

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden / Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden / Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden / Ändern )

Google+ photo

Du kommentierst mit Deinem Google+-Konto. Abmelden / Ändern )

Verbinde mit %s


Folgen

Erhalte jeden neuen Beitrag in deinen Posteingang.

Schließe dich 247 Followern an

%d Bloggern gefällt das: